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In the preceding paper, it was shown that the calculation of the density matrix p(t) 
for multiply connected ABC, etc., spin 1/2 spin systems can be greatly simplified by sub- 
dividing the Hamiltonian H into (HI + 7~2), where 7-/1 is a suitable linear combination of 
the constants of the motion. In this paper, a framework for the determination of the time 
evolution of high-order multipolar quantum states is presented and discussed. It is shown 
that the necessary mathematical labour is reduced to a minimum by (i) exploiting the fact 
that £7z is a good quantum number, and (ii) using the theory of partitioned matrices. For 
example, it is shown that for a general n-coupled spin 1/2 system, the spin dynamics of 
the Q = :tzKmax (iKmax T 1) multipolar states, where Kmax is the maximum tensorial 
rank, can be determined without the need to diagonalize the full 2 n x 2 n Hamiltonian 
matrix, where n is the number of spins. In fact, to describe the time evolution of the 
Q = (+/(max q: 1) multipolar states it is only necessary to diagonalize two n x n matrices 
at most. Finally, some cautionary remarks are made concerning the use of the "weak- 
coupling approximation". 

1, I n t r o d u c t i o n  

In the preceding paper  [1], it was shown tha t  the de t e rmina t ion  of  the t ime depen- 
den t  dens i ty  ma t r ix  p(t), for ABC,  etc., coupled  spin 1/2 spin systems,  can be 
grea t ly  simplif ied by subdividing the H a m i l t o n i a n  

= ~ ,  + ~ 2 ,  (1) 

where  7/1 c o m m u t e s  wi th  H.  In practice,  this is achieved by first ident i fy ing the con- 
s tants  o f  the m o t i o n  for  H,  and  then  choos ing  7-ll to be a sui table c o m b i n a t i o n  o f  
the cons tan t s  o f  the mot ion .  Fur ther ,  it was also d e m o n s t r a t e d  tha t  if/(max is the 
m a x i m u m  r a n k  avai lable to the spin system, tensor  opera tors  of  the f o r m  I " ~ , ,  (k) 
are simple cons tan t s  o f  the mo t ion  under  the act ion of  7-/2. Such opera to r s  on ly  
evolve in a Zeeman- l ike  fash ion  under  the ac t ion of  Hi .  

In  this paper ,  the p rob lem o f  de te rmining  the evolu t ion  of  h igh-order  t ensor  
opera to rs  T~Q(k) is addressed,  where the order  (2 is less t h a n  the m a x i m u m  rank  
tensor/(max avai lable  to the spin system. F o r  example,  we shall  be specifically con- 
cerned wi th  the t ime evolu t ion  of  the mult iple  q u a n t u m  states O = -t-2 for  the A B C  
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spin 1/2 coupled systems, and Q = -t-3 for ABCD spin systems. It is, of course, well 
known that the number  of lines in a multiple quantum (MQ) N M R  experiment is 
reduced as the MQ order is increased [2]. This is due to the reduction in the number  
of  "al lowed" transitions as Am is increased. However, in this paper it will be shown 
that the determination of the time evolution of high order tensors does not require a 
full diagonalization of  the 2 ~ x 2" matrix for a n-coupled spin 1/2 spin system. In 
fact, to determine the time evolution of the Q = + K m a  x zl= 1 multipolar states, it is 
only necessary to diagonalize at most two n x n matrices. 

Finally, all the definitions and notations used in this paper follow those of the 
preceding paper. 

2. A three spin 1/2 scalar coup led  A B C spin system 

For the ABC spin 1/2 spin system discussed in [1], it can be shown that 7-/1 and 
H2 can be expressed in the partit ioned form 

 l/h = 

0 

0 al 

1 0 

1' 0 

0' 0 

1 1' O' 

0 0 0 ,  

bl 0 0 

0 cl 0 

0 0 dl 

7--[2/h = 

0 

0 0 

1 0 

1' 0 

O' 0 

1 1' O' 

0 0 0 

b2 0 0 

0 c2 0 

0 0 0 

(2) 

where the 1 x 1 al and dl matrices, and 3 x 3 b~, b2, cl, c2 matrices are summarized 
in Table 1. Here the 8 x 8 Hamiltonian matrix has been partit ioned using the ficti- 

Table 1 
The matrices, a~, bl, cl, dl, and a2, b2, c2, d2 for the Hamiltonian ofeq. (2). 

al=-~Ac;,+33 (ffz=+3/2);  dl~--3At~+33 ( J z = - 3 / 2 )  

o o o o 
~Aco-- ~J  0 " Cl 0 , --~Aw - ~J 0 

o o ¼J o o 

(Jz = +1/2) (3"z = -1/2) 

a2 = 0  (,7.-=+3/2); d2=0 ( f f z= -3 /2 )  

[a+,A~ol JBc JAc ] a -,Acol JBc 3Ac 
82=1 J~c b+Aco2 JiB 1; c2= ~Bc b-Aa~2 JAB 

[ Ac  ~' AB C + A W  3 J~AC JAB C -- A ~ 3  

(Jz = + 1/2) (Jz = - 1/2) 
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tious spin labels {0, 1, 1', 0/}, as discussed by [4]. In this notat ion the spin label 0 cor- 
responds to the single entry under J z  = 3/2, 1 to the three entries under  
J z  = +1/2 ,  1 / to the three entries under ,7z = - 1 / 2 ,  and 0 t to the single entry 
J z  = - 3 / 2 .  The fictitious spins 0 and 0 ~, 1 and 1 / simply refer to different parts of  
the original 8 x 8 matrix, and have no physical significance. They are used solely to 
simplify the necessary book-keeping, under various matr ix manipulations.  Note  
that  the two 3 x 3 matrices b2 and c2 contain off-diagonal terms. In the weak cou- 
pling limit [3], these off-diagonal terms in 7-/2 are often dropped, an approximat ion 
which holds well for non-degenerate  spins in the high-field limit. In general how- 
ever, such off-diagonal terms can cause considerable admixing between those states 
with the same ,.Tz value. Finally, readers who are unfamiliar  with non-square 
matrices should note that al though the region spanned by (1 [0) appears to be square 
in eq. (2), it is in fact a 3 x 1 (null) rectangular matrix. 

We are now in a position to make an easy observation. Since the first and last 
rows and the first and last columns in the 8 x 8 matrix of  7[2 and zero, the highest 
order  tensor operators A+B+C+ and A _ B _ C _  are constants of  the mot ion  under  
7/2. Thus the evolution of  the Q = 3 tensors is determined solely by 7/1, i.e. 

e-i7-6 t/h A + B +  C +e+i~, t/t~ = A + B +  C+e-i3LxcJt . (3) 

However,  the evolution of  the tensor operators A+B+, A+C+,  B+C+, etc., sum- 
marized in Table 2, is a little more  difficult to determine. These operators are close 
to but not  exactly members  of a basis set with well defined rotat ional  properties. A 
more  appropriate  set can be seen in Table 3. Nevertheless, since both sets of  opera- 
tors occupy those parts of  the matrix spanned by {0[ 1') and (110/), the conclusions 
reached below are independent  of which set is used. 

Using the matrices set out in Table 2, the double quan tum operators A+B+ can 
be writ ten in the abbreviated form: 

Table 2 
The double quantum operators A+B+, etc. The numbers outside the matrices refer to the original 
labels ofthe ABC spin-labelling sequence [1]. 

8 

(lIB+C+[0,) = 23 ~ =  c~' 

Ill 7 6 4 5 
(0[B+C+ll')=l 10 0 1 I = 'D 
(0IA+C+[I') -- 11 0 1 01 = /3 (I[A+C+I0') = 3 =/3' 

5 
(01A+B+II') = 1 [1 0 0 I = 7 

( l lA+B+ [0') = 3 = 3/ 
5 
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0 

0 0 

A+B+ = 1 0 

1 t 0 

0' 0 

1 1 / 0'  

0 3  ̀ 0 

0 0 3 /  
0 0 0 

0 0 0 

(4) 

Fur ther ,  on invoking the nested c o m m u t a t o r  relationship,  

p( t) = e -iT~'t/h p(O )e+m't/h 

= p ( 0 )  - + N - . . .  (5) 

and subst i tut ing (2) and (4) into (5), we find after some minor  manipu la t ion  

e-i~l  t / t ~ A + B + e + ~  t/t~ = 3`e--it(al -cl) -t- e -it(bl -dl )3`t 

= 3`e -ia' te+iC't + e +id' te-~" '3 / ,  (6) 

where we have made  use of  the fact that  the 1 x 1 matr ix  al commutes  with the 
3 x 3 matr ix  cl, etc. At  first sight, the reader may  have some difficulty in reconcil ing 
the idea that  the exponential  a rguments  can contain matr ices  of  differing sizes. 
However ,  it should  be born in mind  that  the both  3, and 3" are 1 x 3 and 3 x 1 
matrices,  respectively. So when the exponentials  are expanded,  and mul t ip l ied by 3' 
and 3 / , only 1 x 3 and 3 x 1 matrices remain,  residing in those parts  of  the 
Hami l ton ian  matr ix  spanned  by (011') and (1 I0'), respectively. 

Eq. (6) can be simplified considerably.  First, we observe that  for ~1,  the 
3 x 3 matr ix  bl is d iagonal  with the triply degenerate  eigenvalue 
(1/2)(Aa~ - ) / 2 ) .  Similarly, matr ix  cl is also triply degenerate  with the eigenvalue 
( 1/2) (-Aa~ - ) / 2 ) .  Consequent ly ,  we can re-express (6) in the form 

Pl ( t) = e -m ' t /hA+B+e+i~ ' t /h  

= 3`e-i(3/x~+34))te+i(-½A~-¼)')t q_ 3`te+i(-3A~+3))te-i(½A~z'-¼~l)t 

= 3`e -i(2Ag~+2)t + 3/e -i(2A~-2)t , (7) 

a not  entirely unexpected result. In essence, eq. (7) shows that  the double  q u a n t u m  
operators  A+B+ (3` and 3/) oscillates at the double q u a n t u m  frequencies of  
(2Aa5 ± ) ) ,  respectively, under  the action of  ~1. This is i l lustrated schematically in 
the left hand  side of  Fig. 1. 

To comple te  our  discussion of the evolut ion of  the double  q u a n t u m  opera tor  
A+B+ it is now necessary to examine the evolut ion of  the density pl (t) of(7)  under  
~2.  F r o m  an examina t ion  of  (2), it will be observed that  the p rob lem is somewha t  
easier than  that  of  7-/1 in that  bo th  a2 and d2 are identically equal to zero. However ,  
the 3 x 3 matr ices  b2 and c2 are non-diagonal .  Proceeding as before, we find 
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3_A~+ 2.7 
2 4 

= +3_ 
3 z  2 
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3 
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< .  -> < ,> 

/{1 1 

Fig. 1. The energy splitting of the ABC spin system under the action of 7-/1 and 7-/1 + ~2. The energy 
levels are labelled with the good quantum numbers J.,. In all there are one triple quantum, six double 

quantum, and a maximum of fifteen single quantum frequencies. 

p( t) ---- e-iT-tt/h A+B+e +mt/h = e-m2t/h pl ( t)e +m2t/h 

= ,),e+itC2e-(ZAw+3)t+ e-Z~°zt')/e -(2/'&-3)t . (8) 

Thus  we have arrived at a closed fo rm expression for the evolut ion of  the double  
q u a n t u m  operators  under  bo th  ~1 and 7-/2. However ,  to proceed further,  it is neces- 
sary to diagonalize the 3 x 3 matr ices  b2 and c2. On denot ing  the required 3 • 3 uni- 
tary matr ices  by/Ab and/gc, (8) can be recast as 

p( t) = e - i ~ t / h A + B + e  +tT-tt/h =')'Z, l c (Uc l  e+itc2L~c)Uc l e-(2A~+3)t 

+ l,t b (l,,[ble-itbzL,[b)Z~bl",[te - (2A~-J) t  . (9) 

F r o m  an examina t ion  of  (9) it is clear that  the triply degenerate  double  q u a n t u m  
frequency (2Ao~ + ) )  of  7-/1 will split into three frequencies of  w(c)i - (2Ao~ + j'), 
o~(c)2 - (2A& + ) ) ,  and w(c)3 - (2Ao3 + j ) ,  where w(C)a, ~(c)2 and w(c)3 are the 
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eigenvalues of c2. Similarly, the degeneracy of the double quantum frequency of  
(2Acb - ~?) will also be lifted by the eigenvalues ofb2. Thus there will be a maximum 
of  six double quantum frequencies, as shown schematically in the right hand side of 
Fig. 1. However in practice, the actual number of double quantum frequencies 
determined experimentally is often lower, being determined by transition matrix 
elements such as 

T M - -  (Jz  = -1 /2 [T~(k) l Jz  = 3/2) ,  (10) 

where there are three distinct, but possibly degenerate, IJz = - 1/2) eigenfunctions 
belonging to the 3 x 3 c2 matrix of  Table 1. 

Finally, we note also that only if b2 and c2 are diagonal will the matrices 7 and 
3 / remain  intact and oscillate at a single frequency. In general, the matrices ct,/3, 7 
and c~',/3', 3/will  admix as time progresses. That is A+B+ will evolve into A+C+ 
and B+C+ components  and vice versa. 

Next, we address the more difficult problem of calculating the evolution of the 
single quantum operators, say A+. For these operators their matrix counterparts  
take the form 

0 

A+--- 1 

1' 

1 / 

0 1 1' O' 

0 e 0 0 

0 0 ~5 0 

0 0 0 c' 

0 0 0 0 

(11) 

Since the precise form of the matrices ~, 6, E', is unimportant  for our discussion, 
we shall not trouble to write them out. After some manipulation,  we find 

Pl ( t) = e - i ~ '  t/h A + e + i ~ l  t/h = ee- i t (a , -bl  ) -Jr- e - i t(cl-dl)  e` + e - i tcl  5,  (12)  

where £i  is the Louiville operator 

/~1 (~ = [']-~1,5]_ = big - Gel . (13) 

For  7-/1, the matrices bt and Cl are diagonal and triply degenerate. Consequently, 

£~5 = Acb6 (14) 

and so 

Pl ( t) = e - t H l t / h A + e  +iT~t/h = ee -i(A~+51)t - t - e - i (A~- ) ) t e ' -4 -e - iA~t¢5 .  (15)  

Thus under  H1 the evolution of A+ is characterized by the three single quantum fre- 
quencies (Aa5 ± J) and Aa5, although these are not observed in practice. To deter- 
mine the true single quantum N M R  frequencies, we must  examine the subsequent 
evolution of pl (t) under ~2. We find 
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p( t) = e-iTt2t/h pl ( t)e +iT-htA 

= ce +itb2 e -i(A~+2)t -1- e -itcz cte - i (A~-2 )  t -q- e-i t£2 ~e--iAffJt, (16) 

where 

£2 ~ ---- [~t-~2, ~]_ ---- b2~ - ~c2. (17) 

From an examination of the first two terms in (16), it is clear that the N M R  signals 
will be determined by the eigenvalues of say b2 minus (Acb + J), etc. However, the 
calculation of the third term is much more difficult. In summary,  therefore, even 
the use of parti t ioned algebra does not help us to find simple closed form Am = +1 
solutions for A B C  systems. 

3. A four  spin 1/2 scalar coup led  A B C D  spin system 

For the A B C D  four spin 1/2 assembly discussed in paper I, the relevant 
Hamiltonians ~1 and 7-/2 c a n  be expressed in the partit ioned form 

3 5 3' 0 / 3 5 32 
2 2 2 2 2 2 

0 0 0 0 

bl 0 0 0 

0 cl 0 0 

0 0 dl 0 

0 0 0 e~ 

0 

0 

0 
"]'-/2 / h = 

0 

0 

0 

0 0 0 

b2 0 0 

0 c2 0 

0 0 d2 

0 0 0 

0 

a l  

0 

0 

0 

0 

0 ! 

0 

0 
(18) 

0 

0 

0 

where the relevant matrix entries are summarized in Table 4. Here the 16 x 16 

Table 3 
Unit  tensor opera tors  for an ABCcoup led  spin 1/2 system, with order Q = 4-2. 

T~3(k_a) = :FAiB:LC± 

J'32(k~) = (-~)½[A.B±C± + A~B_.CI + A±B±Czl 

T~2(k-'~) = q: ~3 [AzB±C± + A±BzC± - 2A±B±C_.] 

]722(k~ ) = :F[A..B±C± - A±BzC±] 

Three coupled spin 1/2 tensor operators 

j?22(k~. ) = ~B±C~ 

J?z~2(k~) = ~A,C+ 

J?2. 2(k~) = ~A±B± 

Two coupled spin 1/2 tensor opera tors  

Legend coupling schemes: 
k,~ : kA + kB = K ' ( =  2); K '  + k c  = K ( =  1,2,3) 
k[~ : kA + k~ = K ' ( =  l); K '  + k c  = K ( =  0, 1,2) 
k. r : k A ( = 0 ) + k n = K ' ( =  1); K ' + k c ( =  I) = K ( =  0,1, 2) 
k s : k A + k B ( = 0 ) = K ' ( =  I); K ' + k c ( =  1) = K ( = 0 , 1 , 2 )  
k , : k A + k B = K ' ( = 2 ) ;  K ' + k c ( = 0 ) = K ( = 2 )  
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Table 4 
The matrices, al,  bl ,  cl, dl ,  el, b2, c2, and d2 for eq. (18). I is the unit matrix. 

al = ( 2 A ~ + ~ 2 ) ;  
bl = A~I(4 x 4); 
cl = - ½ ~ ( 6  x 6) 

b2 

c2 

el = (--2Aft,'+ 3if) 
d l =  --Ac~I(4 x 4) 

+,zx o, .rbo 4,, .r',,, I = a -,zx o, .rb, , 4,, 
JC, D b + Aw2 J'sc J'AC JCD b - Aw2 J'sc J'ac 

+ ,x~o3 :'~c :'Bv 0 :',z~ J'Ac 
J'sc e +/Xw5 J'cD fad  0 J'AS 
J'm~ J'CD f -}- Aa)6 JtAC lAB o 
o :;c e- X 3 4 c  40 

fAD 0 lAB JtBC e -- Aco5 JCD 
JtA C JtA 8 0 J'~o J'co f - Ac°6 

matrices for 7-/1 and 7-(2 are labelled according to C7.. = +2 (1 x 1 matrix), 
J z  = +1 (two 4 x 4 matrices), and J .  = 4-0 (one 6 x 6 matrix), which suggests the 
abbreviated labelling scheme {0, 3/2, 5/2, 3/2', 0'}. Once again, 7-/1 is diagonal and 
presents no real difficulties. On the other hand ~2 contains both diagonal and off- 
diagonal terms. Note  that (i) the definitions of the coefficients a, b, c, etc., differ 
from those used for the A B C  system, as stated in [1], and (ii) the first and last rows 
and the first and last columns in the 16 x 16 matrix of 7-/2 are zero. Thus 
A+B+C+D+ and A _ B _ C _ D _  are constants of the motion under 7-/2. 

We are now in a position to examine the evolution of, say, the triple quan tum 
term A+B+C+ whose matrices are summarized in Table 5. Proceeding in exactly 
the same fashion as for the A B C  spin system, the evolution of the A+B+C+ triple 
quantum operator  under 7-[1 is given by 

e-~t/hA+B+C+e+iT~t/h = cte- i t (al -dl )  q-e--it(bl--el)ct ` 

= c~e -it(3A~+351/2) q- e -it(3A~-351/2) o J ,  (19)  

where the matrices a and c~' are defined in Table 5. Consequently, the evolution of 
the triple quan tum operator under the total Hamiltonian 7-/is given by 

p( t) = e-iTtt/h A+B+ C+e +iT~t/h 

~--- o~e+itd2 e -i t(3A~+ 33 /2) --]- e-it(3A~-3Xr/2 ) e-itb2 0Z . (20) 

Note  that the 6 x 6 matrices cl and c2 play no role in determining the evolution of 
the triple quan tum states. In fact to determine the beating frequencies associated 
with the evolution of any triple quantum state available to the four spin 1 /2 system 
it is only really necessary to diagonalize say the 4 x 4 matrix b2, given that b2 and 
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Table  5 
The triple quantum opera tors  A+B+C+,  etc. The numbers  outside the matrices refer to the original  
labels of(22) of[ l ] .  

15 14 12 8 
(0[A+B+C+[~) = 1 I1 0 0 0 I = o~ 

(0IA+B+D+I{- } = 1  l 0  1 0 0 l  = /3 

(0IA+C+D+I 3') = 1 10 0 1 0 l  -- 7 2 

<01B+C+D+I~>=I 10 0 0 l l =  c~ 

16 
2 

(3 IA+B+C +10, ) = 3 
5 
9 

2 
3 (3 IA+C+D+I 0') = 
5 
9 

16 

(3 IA+B+D+[0'  ) = = 
5 
9 

3 
(~[B+C+D+IO') = 5 

9 

/3' 

6' 

d2 are simply related. Thus a maximum of eight beating frequencies is possible, 
although the actual number will be reduced by symmetry considerations. 

Clearly, the methods described in this and the preceding paper can be extended 
to higher numbers of connected spins. For example, for n-coupled spin 1 /2 nuclei, 
the nth order multiple quantum state is a constant of the motion under ~2 and 
evolves at a frequency ofnAa3 under ~1. Further, for n-coupled spin 1/2 nuclei it is 
only necessary to diagonalize at most two n x n matrices to determine the beating 
frequencies associated with the Q = i g r n a x  T 1 multipolar states. 

4. Conc lus ions  

In this paper, the spin dynamics of high order multipolar states with 
Q = ±Krnax and Q = ±Kmax q: 1 for multiply connected spin 1 / 2 nuclei have been 
examined using (i) the fact that J z  is a good quantum number, and (ii) the theory of 
partitioned matrices. In particular, it has been shown that to describe the spin 
dynamics of high-order multipolar states with Q = +Kmax q: 1, it is only necessary 
to diagonalize at most two n x n matrices. Since the full Hamiltonian matrix has 
dimensions of 2 n x 2 n, this constitutes a considerable saving in mathematical 
labour. 

Finally, a word of caution has been given concerning the weak-coupling approxi- 
mation, particularly for homonuclear spin systems. In this approximation, the ori- 
ginal single spin Zeeman labels are still good quantum labels. However, it is 



374 G.J. Bowden et aL / Coupled spin 1~2systems. II 

apparent ,  f rom an examinat ion of  the matrices b2, c2 in Table 1, and b2, c2, and d2 
in Table  4, that  considerable admixing will take place between states with the same 
,fz (=  Az + B~ + Cz + . . . )  values. Thus conclusions based on the weak coupling 
limit should be viewed with caution, not only in the limit Aw --4 0, but  also in the 
presence of  degeneracies. 
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